Circular Section

(Analytic Geometry)


Analytic Geometry
Link to Dbpedia

What is Circular section?

In geometry a circular section is a circle on a quadric surface (such as an ellipsoid or hyperboloid). It is a special plane section of the quadric, as this circle is the intersection with the quadric of the plane containing the circle. Any plane section of a sphere is a circular section, if it contains at least 2 points. Any quadric of revolution contains circles as sections with planes that are orthogonal to its axis; it does not contain any other circles, if it is not a sphere. More hidden are circles on other quadrics, such as tri-axial ellipsoids, elliptic cylinders, etc. Nevertheless, it is true that: * Any quadric surface which contains ellipses contains circles, too. Equivalently, all quadric surfaces contain circles except parabolic and hyperbolic cylinders and hyperbolic paraboloids. If a quadric contains a circle, then every intersection of the quadric with a plane parallel to this circle is also a circle, provided it contains at least two points. Except for spheres, the circles contained in a quadric, if any, are all parallel to one of two fixed planes (which are equal in the case of a quadric of revolution). Circular sections are used in crystallography.

Technology Types

analytic geometryconic sectionquadric

Tech Info

Source: [object Object]
 — Date merged: 11/6/2021, 1:32:49 PM
 — Date scraped: 5/20/2021, 5:56:40 PM