# GIT Quotient

Tech

## What is GIT quotient?

In algebraic geometry, an affine GIT quotient, or affine geometric invariant theory quotient, of an affine scheme with an action by a group scheme G is the affine scheme , the prime spectrum of the ring of invariants of A, and is denoted by . A GIT quotient is a categorical quotient: any invariant morphism uniquely factors through it. Taking Proj (of a graded ring) instead of , one obtains a projective GIT quotient (which is a quotient of the set of semistable points.) A GIT quotient is a categorical quotient of the locus of semistable points; i.e., "the" quotient of the semistable locus. Since the categorical quotient is unique, if there is a geometric quotient, then the two notions coincide: for example, one has for an algebraic group G over a field k and closed subgroup H. If X is a complex smooth projective variety and if G is a reductive complex Lie group, then the GIT quotient of X by G is homeomorphic to the symplectic quotient of X by a maximal compact subgroup of G (Kempf–Ness theorem).

### Technology Types

algebraic geometry

### Synonyms

Geometric invariant theory quotient

기하 불변량 이론 몫 (ko)

## Tech Info

Source: [object Object]
— Date merged: 11/6/2021, 1:32:53 PM
— Date scraped: 5/20/2021, 6:10:41 PM