Proof Of Fermat'S Last Theorem For Specific Exponents



Link to Dbpedia

What is Proof of Fermat's Last Theorem for specific exponents?

Fermat's Last Theorem is a theorem in number theory, originally stated by Pierre de Fermat in 1637 and proved by Andrew Wiles in 1995. The statement of the theorem involves an integer exponent n larger than 2. In the centuries following the initial statement of the result and before its general proof, various proofs were devised for particular values of the exponent n. Several of these proofs are described below, including Fermat's proof in the case n = 4, which is an early example of the method of infinite descent.

Technology Types

article proofdiophantine equationequationevidencefermat's last theoremmathematical statementmathematical theoremproofpropositionstatementtheoremtheory


Démonstration du dernier théorème de Fermat pour les exposants 3, 4 et 5 (fr)Demostració de l'últim teorema de Fermat (ca)برهان مبرهنة فيرما الأخيرة بالنسبة لحالات خاصة للأس (ar)特定指数的费马大定理的证明 (zh)

Tech Info

Source: [object Object]
 — Date merged: 11/6/2021, 1:32:41 PM
 — Date scraped: 5/20/2021, 5:53:47 PM